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Abstract

We introduce robust kurtosis, which is a new quantile-based measure for the kurtosis of

stock returns. For approximately normal distributions, robust kurtosis is equivalent to the

traditional moment-based kurtosis. For fat-tailed distributions, when kurtosis matters the

most, robust kurtosis provides a distinct and reliable measure. Using a cross-section of in-

ternational stock index returns, we find that robust kurtosis carries a significant negative

premium: higher robust kurtosis is related to lower future stock returns, especially for devel-

oped markets. This contrasts with the significant positive premium associated with robust

skewness, especially for emerging markets.
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1 Introduction

Outside of special cases, such as quadratic utility or normally distributed returns, skewness

and kurtosis both matter to investors. Skewness measures the asymmetry of the underlying

return distribution. Kurtosis captures the extent to which the probability mass is concen-

trated on the center and tails as opposed to the “shoulders” of the return distribution.1

In the context of financial returns, negative skewness indicates downside risk, high kurtosis

reflects tail risk, and the interaction of the two may be important for investment decisions.2

In this paper, we introduce robust kurtosis, which is a new quantile-based measure for the

kurtosis of financial returns. The new measure of robust kurtosis complements the existing

measure of robust skewness (Ghysels, Plazzi and Valkanov, 2016). Since robust kurtosis

is based on quantiles, it is by design insensitive to extreme outliers. More importantly, it

has the following crucial advantages over existing measures: (1) for the normal distribution,

robust kurtosis is perfectly equivalent to the traditional moment-based kurtosis; (2) for

moderately fat-tailed distributions, robust kurtosis approximates the moment-based kurtosis

and essentially provides the same information; and (3) for distributions with tails, which are

sufficiently fat so that the moment-based measure is poorly estimated or even does not exist,

robust kurtosis provides a distinct and more reliable alternative to the traditional measure.

When kurtosis matters the most, as in the case of non-normal distributions typically observed

in financial returns, the performance of robust kurtosis is excellent. In short, robust kurtosis

is a reliable measure for all distributions since it approximates well the traditional kurtosis

measure when traditional kurtosis can be accurately estimated, but replaces it by a robust

alternative when it becomes unreliable. To the best of our knowledge, the robust kurtosis

measure and its properties are novel contributions to the literature.

1 Balanda and Macgillivray (1988) define kurtosis as the location-free and scale-free movement of proba-

bility mass from the shoulders of the distribution to its center and tails.

2 For example, Kraus and Litzenberger (1976), Harvey and Siddique (2000), Neuberger (2012), Jondeau,

Zhang and Zhu (2019), and Langlois (2020), among others, assess the role of skewness in the investment

decision. The importance of kurtosis is demonstrated by Scott and Horvath (1980), Dittmar (2002),

Guidolin and Timmermann (2008), and Jondeau and Rockinger (2012).
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We also make an empirical contribution to the literature by evaluating the ability of condi-

tional robust kurtosis, together with conditional robust skewness, to predict the cross-section

of international stock index returns. The robust kurtosis estimator is based on quantiles,

which are straightforward to estimate conditionally, thus leading to a robust measure of

conditional kurtosis.3 Specifically, we assess whether robust skewness and robust kurtosis

can consistently predict the stock market performance of a large cross-section of countries.

Our data sample comprises the monthly returns of 39 US dollar-denominated country stock

indices for the sample period of January 1996 to June 2019. The cross-section includes 23

developed markets and 16 emerging markets.

Our empirical approach involves the following steps. First, we account for the dynamics of

robust skewness and robust kurtosis using the conditional mixed-data sampling (MIDAS)

quantile model proposed by Ghysels, Plazzi and Valkanov (2016). A crucial advantage of

the MIDAS quantile model is that it conditions on daily returns to estimate the quantiles of

monthly returns, which is especially suitable given the length of our sample period. Second,

we perform standard portfolio sorts based on either robust skewness or robust kurtosis to

rank international stock index returns, allocate countries to portfolios and examine the port-

folios’ future performance. Finally, we estimate Fama and MacBeth (1973) cross-sectional

regressions, which formally assess the predictive ability of robust skewness and robust kur-

tosis, while controlling for volatility and standard economic fundamentals.4

Our main empirical finding is that there is a significant negative premium associated with

robust kurtosis, especially across developed markets : the higher the robust kurtosis the lower

the future international stock returns. This finding contrasts with the significant positive

premium associated with robust skewness, especially across emerging markets. Overall,

3 While conditional kurtosis can be modelled parametrically in fat-tailed extensions of GARCH models

(see, e.g., Hansen, 1994; Jondeau and Rockinger, 2003; Brooks et al., 2005; León, Rubio and Serna,

2005; Bekaert, Engstrom and Ermolov, 2015), the moment-based estimator cannot be easily generalized

to include a conditional version.

4 Our main analysis is performed ex-ante (i.e., conditioning on t − 1 information) but in-sample (i.e.,

using the full sample MIDAS estimates). In the Online Appendix, we also report out-of-sample results.
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across all countries, the Fama and MacBeth (1973) regressions indicate that robust kurtosis

is dominant over robust skewness.5

These findings become stronger when we restrict our analysis to countries with positive

excess robust kurtosis, i.e., robust kurtosis higher than the value of 3 associated with the

normal distribution. It is sensible that the fourth moment is informative primarily for non-

normal distributions indicated by positive excess kurtosis. We consider this restriction to be

economically motivated since investors are unlikely to care about kurtosis if the distribution

tails are thinner than the normal.6 Using the restricted cross-section, a zero-investment

portfolio that every month goes long on the top 30% of countries with the highest robust

kurtosis and short on the bottom 30% of countries with the lowest robust kurtosis delivers

an annualized return of −5.3%. In contrast, a similar portfolio based on robust skewness

delivers an annualized return of 3.6%.

Consistent with a long line of research, our results confirm the importance of higher mo-

ments in predicting expected stock returns. However, the direction of this predictive rela-

tion appears to be inconsistent with some previous theoretical contributions. Specifically,

the positive cross-sectional relation between skewness and expected stock returns is incon-

sistent with the theoretical findings of Arditti (1967, 1971), Kraus and Litzenberger (1976),

Harvey and Siddique (2000) and Mitton and Vorkink (2007), which predict a negative re-

lation. The negative cross-sectional relation between kurtosis and expected stock returns is

inconsistent with the theoretical findings of Scott and Horvath (1980), Kimball (1993) and

Dittmar (2002), which predict a positive relation. Our analysis, therefore, sheds new light

on this literature by providing evidence of a negative premium associated with conditional

robust kurtosis in predicting the cross-section of international stock returns.7

5 We also find that volatility has an insignificant relation to future stock returns. Therefore, the predictive

ability of the third and the fourth moment is distinct from that of the second moment.

6 Imposing economic constraints on kurtosis is roughly analogous to the economic constraints imposed

on equity premium prediction by Campbell and Thompson (2008).

7 For additional contributions on the predictive ability of skewness and kurtosis, see Kumar (2009), Boyer,

Mitton and Vorkink (2010), Bali, Cakici and Whitelaw (2011), and Amaya et al. (2015).
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The main implication of our findings is that high conditional skewness or low conditional

excess kurtosis is likely to improve the benefits of international diversification. However,

in the opposite case of low conditional skewness or high conditional excess kurtosis, a US

investor is better off investing domestically by lowering the asset allocation to international

stock investments. In other words, our main results provide indirect support for the home

bias of a US investor who faces international stock investments with low (negative) robust

skewness or high excess robust kurtosis. This is consistent with the analysis of Guidolin and

Timmermann (2008), who find that a combination of investor preferences that put weight

on the skewness and kurtosis of portfolio returns along with time-variations in international

investment opportunities is important in explaining the home bias of US investors.

The new robust kurtosis measure is linked to the original quantile-based kurtosis measure of

Moors (1988) but the two measures are distinct. Robust kurtosis has a different interpreta-

tion since it can be understood as a transformation of Moors’ measure that is approximately

comparable to the traditional kurtosis measure, when the latter exists and can be reasonably

well estimated. It can therefore be interpreted as the value of the moment-based kurtosis

implied by Moors’ measure. By contrast, Moors’ measure is not easily interpretable and

cannot be compared to the traditional kurtosis measure. In addition, the empirical perfor-

mance (e.g., in portfolio sorts) of Moors’ measure is poor compared to robust kurtosis. For

these reasons, we believe that both conceptually and empirically robust kurtosis is distinct

to Moors’ kurtosis.

The paper is organized as follows. In the next section, we set the stage by reviewing standard

measures of skewness and kurtosis. Then, we introduce and derive the new robust kurto-

sis measure. The performance of robust kurtosis for alternative distributions is evaluated

through Monte Carlo simulations in Section 3. Section 4 implements conditional measures of

robust skewness and kurtosis on the cross-section of international stock returns. In Section 5,

we assess the predictive ability of the robust measures. Finally, Section 6 concludes. Detailed

econometric derivations and additional material are included in our Online Appendix.

5



2 New Robust Kurtosis Measure

Among several measures of skewness and kurtosis proposed in the literature, the most popu-

lar continue to be the moment-based measures of Pearson (1905). Despite their widespread

use, these measures have two shortcomings. First, they require the existence of the third

and fourth moments. Otherwise, they are undefined. Second, their estimators are based on

sample moments, which are highly sensitive to outliers. The effect of outliers is magnified

by being raised to the third and fourth powers (Kim and White, 2004), resulting in estima-

tor variances that depend on the existence of the sixth and eighth moments, respectively.

These shortcomings limit the usefulness of moment-based estimators for financial data, where

asymmetry, fat tails and large outliers are standard elements of the return distribution.

In this context, it would be useful to derive robust measures for the skewness and kurtosis of

the underlying return distribution using information from quantile-based measures so that

three conditions hold: (1) the robust measures are insensitive to outliers, (2) they remain

well-defined even in extreme cases, when the moments do not exist, and (3) they are equiva-

lent to the moment-based measures for normal and approximately normal distributions.8 In

recent work, Ghysels, Plazzi and Valkanov (2016) do so for robust skewness. In this paper,

we do so for robust kurtosis.

2.1 Moment-Based and Quantile-Based Measures

In this section, we briefly define the moment-based and quantile-based measures of skewness

and kurtosis for the h-period continuously compounded returns rt,h defined as follows:

rt,h =
h∑
j=1

rt+1−j, h ≥ 1, (1)

8 The term “approximately normal” refers to normal distributions and moderately fat-tailed distributions

for short-horizon returns, which are aggregated over long horizons to become approximately normal.
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where rt is the one-period return. We define the mean and variance of rt,h as µh = E[rt,h]

and σ2
h = E[(rt,h − µh)2]. The quantile based measures discussed below depend on Qα(rt,h),

which is defined as the α-th quantile of rt,h, for the following seven quantile levels: α =

(α1, . . . α7)′ = (0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875)′. We collect these quantiles in the

vector Q(rt,h) = (Qα1(rt,h), Qα2(rt,h) . . . Qα7(rt,h))
′.9 For notational simplicity, we suppress

the subscript h for h = 1 and suppress dependence on rt,h when possible.

The conventional moment-based measure of skewness for rt,h is defined as follows:

S = E

[(
rt,h − µh

σh

)3
]
. (2)

As an alternative to S = S(rt,h), Bowley (1920) introduces the following quantile-based

measure:

QS(Q) =

(
Q0.75(rt,h)−Q0.5(rt,h)

)
−
(
Q0.5(rt,h)−Q0.25(rt,h)

)
Q0.75(rt,h)−Q0.25(rt,h)

. (3)

Bowley’s skewness measure captures the asymmetry of the interquartile range with respect to

the median. QS is equal to zero for all symmetric distributions. A positive (negative) value

of QS indicates skewness in the right (left) tail of the distribution. Unlike the moment-based

measure, the value of QS is restricted to lie between −1 and 1, inclusive.

The conventional moment-based measure of kurtosis for rt,h is defined as follows:

K = E

[(
rt,h − µh

σh

)4
]
. (4)

As an alternative to K = K(rt,h), Moors (1988) proposes the following quantile-based mea-

sure:

QK(Q) =

(
Q0.875(rt,h)−Q0.625(rt,h)

)
+

(
Q0.375(rt,h)−Q0.125(rt,h)

)
Q0.75(rt,h)−Q0.25(rt,h)

. (5)

In words, Moors’ kurtosis measure is defined as the ratio of the sum of the two shoulders of

9 We use the convention of bold-facing variables to denote vectors across multiple quantiles.
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the distribution to the interquartile range. This is based on the intuition that a distribution

with fat tails and a peaked center has relatively wide shoulders. The standard normal

distribution has a value of QK = 1.23, with higher values representing excess kurtosis.

Since they depend on quantiles rather than moments, QS and QK are more robust to outliers

than S and K. This is analogous to the greater robustness of the median relative to the

mean. However, QS and QK are not directly equivalent to S and K, respectively. For this

reason, our analysis focuses on the new robust kurtosis measure, which is directly equivalent

to the moment-based estimator for normal or approximately normal distributions.10

2.2 Derivation of Robust Kurtosis

In this section, we derive our new measure of robust kurtosis. We begin by noting that QS

and QK are location- and scale-invariant. Therefore, we can express QS and QK in terms

of the standardized h-period return:

zt,h =
rt,h − µh

σh
, (6)

so that QS (Q(rt,h)) = QS (Q(zt,h)) and QK (Q(rt,h)) = QK (Q(zt,h)). For simplicity, we

assume that the one-period return rt follows an i.i.d. process with a finite third and fourth

moment and an absolutely continuous cumulative distribution function (CDF).

The Cornish-Fisher expansion (Cornish and Fisher, 1938), which is an inversion of the Edge-

worth expansion (Edgeworth, 1905, 1907), can be used to obtain an approximation to the

finite-sample distribution of zt,h when h is of moderate length. The first order Cornish-Fisher

expansion for the α-th quantile of the standardized h-period return zt,h is given by:

Qα(zt,h) = ϕα +
(ϕ2

α − 1)S(zt,h)

6
+ o
(
h−1/2

)
, (7)

10 See Section C of the Online Appendix for a detailed discussion of why rescaling QK by 3
1.23 does not

make it equivalent to K except when returns are exactly normally distributed.
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where ϕα is the α-th quantile of the standard normal distribution. The first term on the

right-hand-side (RHS) of Equation (7) approximates Qα(zt,h) by the quantile of the standard

normal distribution, ϕα. The second term incorporates the effect of skewness on zt,h in order

to improve the quality of the approximation.11

The second order Cornish-Fisher expansion is given by:

Qα(zt,h) = ϕα +
(ϕ2

α − 1)S(zt,h)

6
+

(ϕ3
α − 3ϕα)

(
K(zt,h)− 3

)
24

+
(5ϕα − 2ϕ3

α)S2(zt,h)

36
+ o
(
h−1

)
.

(8)

The first two terms of Equation (8) above are the same as in Equation (7). The third

term improves the approximation by further taking into account the effect of kurtosis on the

standardized return quantile. The last term corrects for the secondary effect of skewness.12

Based on Equation (7), Ghysels, Plazzi and Valkanov (2016) propose a measure of robust

skewness RS for the h-period return (see Sections A.1 and A.2 of the Online Appendix for

the proof):

RS(Q) =
6QS(Q)

ϕ0.75

. (9)

Based on Equations (8) and (9), we derive an approximate relation between the moment-

based kurtosis K and the quantile-based kurtosis QK as follows (see Sections A.3 and A.4

of the Online Appendix for details):

K = 3 +
c4QK(Q)− c1

c5QK(Q)− c2

+

[
c6QK(Q)− c3

c5QK(Q)− c2

]
36QS2(Q)

ϕ2
0.75

+ o(h−1/2), (10)

where K = K(rt,h), Q = Q(rt,h), and c1 to c6 are positive constants, which are functions of

the standard normal quantiles.13 Note that in the third term of the RHS of Equation (10):

11 The second term is of order O(h−1/2) since S(zt,h) is O(h−1/2).

12 The third and fourth terms are both of order O(h−1) since K(zt,h) is O(h−1) and S(zt,h) is O(h−1/2).

13 The exact formulas for c1 to c6 are: (1) c1 = 2(ϕ0.875 − ϕ0.625) ≈ 1.6634; c2 =

−1
12

(
ϕ3

0.875 − 3ϕ0.875 − ϕ3
0.625 + 3ϕ0.625

)
≈ 0.0838; c3 = 1

18

(
5ϕ0.875 − 2ϕ3

0.875 − 5ϕ0.625 + 2ϕ3
0.625

)
≈

0.0655; c4 = 2ϕ0.75 ≈ 1.3490; c5 = −1
12

(
ϕ3

0.75 − 3ϕ0.75

)
≈ 0.1431; c6 = 1

18

(
5ϕ0.75 − 2ϕ3

0.75

)
≈ 0.1533.
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36QS2(Q)

ϕ2
0.75

= RS2(Q).14

Equation (10) affords several insights. First, it provides a direct link between the moment-

based kurtosis measure (K) and the quantile-based kurtosis measure (QK) that strengthens

as the return horizon increases. Second, it makes explicit the influence of skewness (or

asymmetry) on kurtosis. This influence is captured succinctly by the third term, which

allows us to quantify the contribution of skewness to kurtosis. Finally, it motivates our new

robust kurtosis measure as a novel quantile-based measure that approximates the moment-

based measure at long horizons.

Before we introduce our new robust kurtosis measure, we need to address two shortcomings

of Equation (10), which are especially relevant for thin-tailed distributions. The first short-

coming relates to the fact that the second and third terms of Equation (10) are not defined

if the denominator is equal to zero, which will be the case when QK = c2/c5 ≈ 0.5856.

The second shortcoming relates to the fact that the sum of the first three terms of K can

be negative for QK < 1.08. To address both shortcomings, and to ensure that K remains a

continuous function of Qα(zt,h), we smoothly winsorize QK at the rounded-up value of 1.1.

Following Engle and Manganelli (2004), the smoothly winsorized QK is defined as:

QK∗ = 1.1G(QK) +QK
(
1−G(QK)

)
, (11)

where G(x) = 1/
(
1 + eb(x−a)

)
is a logistic function, a = 1.1 is the winsorization point of QK,

and b is a positive finite number that controls the rate of change of the logistic function. The

higher the value of b, the less smooth the winsorization. We set b = 1000. It is important

to note that QK∗ differs from QK only for extremely thin-tailed distributions, which are

rarely applicable to financial data, such as the inverse triangular distribution with a domain

14 Note that in Equations (7) and (8), the quantiles are expressed in terms of standardized returns, zt,h

because the Cornish-Fisher expansions are based on standardized returns. However, in Equations (9)

and (10), skewness and kurtosis are expressed in terms of non-standardized returns, rt,h. This is because

skewness and kurtosis in all their forms (moment-based, quantile-based and robust) are scale-invariant.
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on [−1, 1]. Otherwise, QK and QK∗ are identical.15

Based on this analysis, we propose the following new robust measure of kurtosis:

RK(Q) = 3 +
c4QK

∗(Q)− c1

c5QK∗(Q)− c2

+
[c6QK

∗(Q)− c3

c5QK∗(Q)− c2

]36QS2(Q)

ϕ2
0.75

. (12)

RK is always positive and is always increasing in QK∗ except for extremely skewed distri-

butions. Again, note that RS and RK are scale-invariant.16

The main advantage of the new robust kurtosis measure is that it shares desirable properties

with both the moment-based and the quantile-based measures. For long horizons, it cor-

responds to the moment-based measure when it exists. For short horizons, it is a distinct

measure that exploits information from the quantiles of the distribution. In doing so, it is

robust to outliers and is well defined, even when the tails are too fat for the moments of the

distribution to exist. In short, therefore, this is a new and versatile measure that provides a

novel view of the kurtosis of financial returns.

2.3 Estimation and Inference

The RK measure defined in Equation (12) is a function of QS and QK∗, which are in

turn functions of a finite set of quantiles. We use the sample quantiles Q̂α to estimate the

population quantiles Qα(rt,h). Then we estimate RK(Q) as follows:

R̂K = RK(Q̂), (13)

where Q̂ = (Q̂α1 , Q̂α2 , . . . Q̂α7)′ is the vector of sample quantiles.

In Section B.1 of the Online Appendix, we show the consistency and asymptotic normality of

15 For further details on the smooth winsorization, see Section A.5 of the Online Appendix.

16 Note that the first order derivative of RK with respect to QK∗ is positive if QS(rt,h) ∈ (−0.93, 0.93).

Recall that the range for QS(rt,h) is [−1, 1].
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R̂K as an estimator of RK, as T →∞ under weak conditions on the existence of moments

and allowing for weakly dependent data. This accommodates many models commonly used

in finance, including GARCH processes, continuous-time diffusion and stochastic volatility

models. It is important to note that the estimated robust kurtosis R̂K converges to the

robust kurtosis estimator RK, not to the moment-based estimator K. As a result, the

asymptotic results do not rely on the Cornish-Fisher expansion or the assumption that h

diverges. Instead, they hold for any fixed h, making them suitable for empirical applications

in which h is typically small relative to T .17

3 Monte Carlo Simulation

In this section, we compare the performance of the robust kurtosis estimator (R̂K) to the

traditional moment-based estimator (K̂) by designing Monte Carlo simulations under differ-

ent distributional assumptions and alternative return horizons. We assess performance with

the Root Mean Squared Error (RMSE) and the Root Mean Squared Proportional Error

(RMSPE). The RMSE is equal to the square root of the average squared estimation error.

The RMSPE is calculated in the same way except that the estimation error is scaled by the

population value. By design, the RMSPE accounts for the fact that RK and K may differ

in their population values. The formulas for computing RMSPE and RMSE are provided

in Section E of the Online Appendix.

The simulations have the following specification. In terms of return horizons, we specify

h = {1, 5, 22, 66, 250}, where h = 1 corresponds to the one-day horizon and, therefore,

h = 5/22/66/250 correspond to a weekly/monthly/quarterly/yearly horizon. We denote N

as the number of non-overlapping h-period returns and T = Nh as the sample size of one-

17 As pointed out by a reviewer, robust kurtosis could alternatively be considered as an estimator of Pearson

kurtosis if both h and T diverge. Combining our consistency result (R̂K → RK as T → ∞ for fixed

h) with the Cornish Fisher expansion (RK → K as h → ∞) implies limh→∞ limT→∞ R̂K − K → 0.

A full analysis could be a direction for future theoretical research. However, we do not adopt this

interpretation here since in practice h is typically small relative to T .
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period returns. We set N = 300, N = 1000 and N = 6000 non-overlapping observations.

The values for N are chosen to match realistic data sets for the most practically relevant

horizons. The lowest value (N = 300) roughly corresponds to the monthly sample size used

in our empirical analysis. The highest value (N = 6000) roughly matches the daily sample

size used in our empirical analysis. The intermediate value (N = 1000) can be thought of

as corresponding to 83 years of monthly data or 4 years of daily data. Each experiment is

repeated for 10, 000 simulations.18

In terms of return distributions, we consider eight data generating processes (DGPs) for

the one-period return rt: the benchmark standard normal distribution N(0, 1); the standard

normal distribution with ten artificially generated outliers;19 the symmetric Student-t(5)

distribution to account for fat tails; the Skewed-t skt(5,−0.3) distribution to account for

asymmetry and fat tails; and the GARCH(1, 1) model with N(0, 1), t(10), t(7) or t(5)

innovations to account for volatility clustering with varying degrees of tail thickness. The

GARCH(1, 1) parameters are set to be α = 0.08 (on the lagged squared residuals) and

β = 0.90 (on the lagged variance).20

3.1 Performance of the K Estimator

We begin by assessing the performance of the traditional moment-based kurtosis estimator,

K̂ in terms of its RMSPE. The RMSPEs from the Monte Carlo simulations are reported in

Table 1. Our main findings can be summarized as follows.

First, as expected, K̂ performs very well for the normal distribution across all horizons.

This implies that K̂ is accurately estimated when it matters the least, i.e., when the distri-

18 Since N is fixed when varying h, a given value of N cannot provide a realistic sample size at all horizons.

We set the value of N to be realistic for one of the horizons that we view as most practically relevant.

19 The outliers are generated as in Kim and White (2004) and Ghysels, Plazzi and Valkanov (2016). See

Section D of the Online Appendix for details.

20 These parameters are motivated empirically. When estimating the GARCH-t model across all countries,

the median estimates are α̂ = 0.08 and β̂ = 0.90 with 6.64 degrees of freedom.
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bution is normal. Second, K̂ displays a high RMSPE in the presence of outliers or when

the distribution is fat-tailed, especially for short horizons. Therefore, K̂ is not accurately

estimated when it matters the most, i.e., for fat-tailed distributions. Third, the performance

of K̂ worsens substantially when GARCH volatility is combined with a Student-t distribu-

tion. Therefore, K̂ performs the worst for the distribution (GARCH-t) that best represents

financial returns data.21

Fourth, for sufficiently fat-tailed distributions (such as the Student-t(5)) and fat-tailed distri-

butions with volatility dependence (such as the GARCH-t(7)), the performance of K̂ worsens

as the sample size increases from N = 300 to N = 6000. For fat-tailed distributions without

GARCH volatility, this is true for short horizons. For fat-tailed distributions with GARCH

volatility, this is true for all but the yearly horizon. Therefore, the performance of K̂ is poor

for realistic distributions and it actually worsens with higher sample size.

While the previous finding may run contrary to the usual finding of improved estimation

accuracy with sample size, it results from the strict variance condition of the fourth sample

moment. In an i.i.d. setting, it is straightforward to show that the variance of K̂ depends

on the eighth moment of returns, which is infinite under many realistic return distributions.

Even if the eighth moment exists, the convergence of its variance may be slow (see, e.g.,

Eberl and Klar, 2020).22 Intuitively, a larger sample size involves a higher probability of

an extreme outlier. When the tails are sufficiently thick, this effect swamps the additional

averaging afforded by the larger sample size. When both fat tails and GARCH effects are

present, large outliers tend to arrive in clusters, making their impact difficult to average out.

In conclusion, the Monte Carlo simulation results show that the traditional moment-based

estimator K̂ performs well for only two cases: (1) normally distributed returns, and (2) fat-

tailed distributions when the horizon is long and in the absence of volatility clustering. In

21 Note that we do not report the RMPSE for K̂ for the GARCH-t(5) because for this model the fourth

moment does not exist (see, Ling and McAleer, 2002).

22 Eberl and Klar (2020) show that, in an i.i.d. setting, the existence of variance of sample skewness

depends on the sixth moment and the variance converges slowly even if the sixth moment exists. Based

on a nearly identical argument, the variance of sample kurtosis depends on the eighth moment.
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other words, K̂ performs well only when returns are normal or approximately normal, i.e.,

when kurtosis is of little or no importance in modelling returns. For the type of distributions

typically observed in financial returns characterized by GARCH volatility and fat tails, the

traditional moment-based estimator is not a reliable estimator of kurtosis.

3.2 Performance of the RK Estimator

Next, we turn to the performance of the robust kurtosis estimator, R̂K. The results reported

in Table 1 are striking: the RMSPE of R̂K is low and remarkably stable across all horizons

and return distributions. Notably, R̂K often performs better for returns with fat tails,

asymmetry and volatility clustering than for normally distributed returns. For example, for

N = 300 across all distributions and horizons, the highest RMSPE is equal to 0.60 (N(0,1)

with outliers for h = 1) and the lowest is equal to 0.32 (GARCH-t(5) for h = 1). In other

words, the RMSPE of R̂K for perhaps the most realistic distribution (GARCH-t(5)) is lower

than for all other distributions, including the normal.

Notably, the RMSPE of R̂K becomes consistently lower as we move to a higher sample size,

i.e., from N = 300 to N = 6000. Hence, not only is R̂K a reliable estimator with a low

RMSPE across all cases, but its performance also improves with sample size.

Additionally, R̂K performs better than K̂ at short horizons (e.g., h = 1) for almost all

distributions other than the normal. Importantly, for the GARCH-t distributions, which are

the most relevant for financial returns data, R̂K perfoms better than K̂ both for short and

for long horizons. Consequently, R̂K is a far more reliable estimator than K̂ for financial

returns data characterized by non-normal distributions.

To conclude, based on the RMSPE, our Monte Carlo evidence indicates that the performance

of the robust kurtosis estimator is consistently excellent in all cases regardless of horizon and

distribution. More importantly, the robust kurtosis estimator performs substantially better

than the traditional moment-based estimator when the distribution deviates meaningfully

from normality. This makes R̂K an ideal kurtosis estimator for short- and long-horizon
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financial returns data characterized by fat tails and volatility clustering.

3.3 Comparison of K and RK based on RMSE

We have so far compared K̂ and R̂K using the RMSPE, which rescales the estimation

error by the population value. In Table 2, we present the more commonly reported RMSE

without rescaling. Overall, the RMSE results are similar to the RMSPE results but now the

dominance of R̂K over K̂ is more pronounced. Specifically, for short horizons (h = 1), R̂K

outperforms K̂ across almost all non-normal distributions. For realistic return distributions,

such as GARCH-t, R̂K outperforms K̂ across all horizons and sample sizes. For all other

cases, R̂K outperforms K̂ for low horizons and high sample sizes. Overall, these results

confirm that R̂K is a superior estimator for financial asset returns.

3.4 The Population Values of K and RK

It is important to highlight that by design the population values of RK and K may differ.

The population values reported in Table 3 indicate that K and RK have similar values for

two cases: (1) the benchmark normal distribution across all horizons, and (2) for approxi-

mately normal distributions. For all other cases, the two estimators deviate in population

value. The deviation becomes more pronounced at short-horizons and in the presence of fat

tails combined with volatility clustering. By design, therefore, K and RK provide distinct

measures of kurtosis for the most relevant distributions associated with financial returns.23

It is important not to confuse the population values with performance. When returns are

(approximately) normal, K and RK have similar values and both are estimated reliably. In

all other cases, when kurtosis matters the most, K has a high value that cannot be estimated

23 The population values are calculated analytically when feasible. This is the case only for the normal

distribution across all horizons and for the t(5) distribution when h = 1. For all other cases, we draw

10, 000 artificial samples for rt with length T = 20, 000h and then compute the non-overlapping h-period

return for each sample. The average across these simulations is used as the population value.
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reliably, whereas RK has a lower value than K that can be estimated reliably. These findings

are especially true for the one-month horizon used in our empirical analysis.

4 Empirical Application: International Stock Markets

4.1 Data Description

In this section, we implement robust skewness and robust kurtosis on the cross-section of

international stock index returns. Our empirical analysis focuses on the monthly returns of

39 US dollar-denominated country stock indices for the sample period of January 1, 1996 to

June 30, 2019. The data sample comprises 23 developed markets (DM) from FTSE and 16

emerging markets (EM) from the S&P/IFCI indices. We refer to the union of DM and EM

as ALL. The returns data are obtained from the Refinitiv Eikon database. These data are

similar to the data used by Ghysels, Plazzi and Valkanov (2016) extended to June 2019.

Our analysis is based on daily simple returns, Rt, to calculate the monthly returns Rt,22 =∏21
j=0(1 +Rt−j)−1 using the most recent 22 daily observations, hence h = 22.24 We simplify

our notation by adopting a monthly frequency and referring to monthly returns Rt,22 as Rτ ,

where the monthly index τ is related to the daily index t as follows: for t = 22, 44, 66, . . .

days, τ = t/22 = 1, 2, 3, . . . months. Going forward, using our monthly notation τ − 1 refers

to the previous month and τ − 1/22 refers to the previous day. To be consistent with the

literature, our main analysis uses non-overlapping monthly returns.

24 Although the formal derivation of RS and RK is based on log returns, our empirical application follows

Ghysels, Plazzi and Valkanov (2016) by employing simple returns. As a robustness check, in Table A7

of the Online Appendix, we confirm that our main findings hold using log returns.
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4.2 Conditional Robust Skewness and Kurtosis

A large body of research has documented that the skewness and kurtosis of stock returns are

time-varying (see, e.g., Bekaert and Harvey, 1997; León, Rubio and Serna, 2005; Guidolin

and Timmermann, 2008; Jondeau and Rockinger, 2003, 2012). To capture the dynamics

of robust skewness and robust kurtosis, we employ the conditional MIDAS quantile model

proposed by Ghysels (2014) and Ghysels, Plazzi and Valkanov (2016). A crucial aspect of the

MIDAS quantile model is that it conditions on higher frequency (daily) returns to estimate

the quantiles of lower frequency (monthly) returns. This is in contrast to other conditional

quantile models, such as the CAViaR model of Engle and Manganelli (2004) and White, Kim

and Manganelli (2010), which use same-frequency returns to estimate conditional quantiles.25

Accordingly, our choice of the MIDAS model as a centerpiece of the analysis is due to: (1) its

ability to exploit information from daily returns in estimating monthly conditional quantiles,

(2) its prominence in the literature (see, e.g., Ghysels, Santa-Clara and Valkanov, 2005), and

(3) its well-established good performance (see, e.g., Ghysels, Santa-Clara and Valkanov,

2006; Andreou, Ghysels and Kourtellos, 2010). In this context, our empirical results not

only depend on the definition of robust skewness and robust kurtosis but they also depend

on the ability of the MIDAS model to deliver reliable estimates for the conditional quantiles.

Following the mixed frequency approach, we model the conditional quantile of the monthly

returnsRτ using lagged daily regressors. We condition on Fτ−1 = σ(xτ−1, xτ−1−1/22, xτ−1−2/22, . . .),

the information set including the daily regressors xτ−1−d/22 at a lag of one month plus

d = 0, 1, 2, . . . days. The conditional quantile, denoted by Qα,τ−1(Rτ ), is defined as the

quantile of Rτ conditional on Fτ−1. The relevant conditional quantiles are collected in the

vector Qτ−1 = (Qα1,τ−1(Rτ ), Qα2,τ−1(Rτ ), . . . , Qα7,τ−1(Rτ ))
′. Finally, we define the popu-

lation measures of conditional robust skewness and kurtosis as RSτ−1 = RS(Qτ−1) and

RKτ−1 = RK(Qτ−1), respectively.

25 Aggregating the conditioning variables in order to match the frequency of the dependent variable tends

to produce a bias in the results (see, e.g., Breitung and Swanson, 2002.)

18



To avoid parameter proliferation, the MIDAS quantile model specifies each conditional quan-

tile nonlinearly using theD daily lags inXτ−1 = (1, xτ−1, xτ−1−1/22, xτ−1−2/22, . . . xτ−1−(D−1)/22))
′,

employing just the three parameters θα = (a0,α, a1,α, κα)′ as follows:

Qα,τ−1(Rτ ) = X ′τ−1β(θα) = a0,α + a1,α

D−1∑
d=0

B(d+ 1;κα)xτ−1−d/22. (14)

We define:

β(θα) = [a0,α, a1,αB(1, κα), a1,αB(2, κα), . . . , a1,αB(22, κα)]′ , (15)

B(d;κ) =
f
(
d
D

;κ
)∑D

d=1 f
(
d
D

;κ
) , (16)

f

(
d

D
;κ

)
=

(
1− d

D

)κ−1
Γ(1 + κ)

Γ(κ)
, (17)

where Γ(·) is the gamma function. We estimate the parameters θα with nonlinear quantile

regression using the same objective function as Ghysels, Plazzi and Valkanov (2016).26 The

estimation algorithm sets κ > 0. For the vast majority of cases, we find that κ̂ > 1,

which implies slowly decaying weights. We also set the maximum lag to D = 250 and

xτ−1−d/22 = |Rτ−1−d/22| as in Engle and Manganelli (2004) and Ghysels, Plazzi and Valkanov

(2016). Hence the conditioning information consists of lagged daily absolute returns over

the past one year. In our main empirical analysis, the parameters of the MIDAS quantile

model are estimated using the full sample. Therefore, our analysis is performed ex-ante

(i.e., conditioning on τ − 1 information) but in-sample (i.e., using the full sample MIDAS

estimates). In Section K of the Online Appendix, we also provide out-of-sample results.27

Armed with the MIDAS parameter estimates, we generate the conditional quantiles (e.g.,

Q̂0.75,τ−1(Rτ )) using the fitted values of the MIDAS model and collect them in the vector

Q̂τ−1 = (Q̂α1(Rτ ), Q̂α2(Rτ ), . . . Q̂α7(Rτ ))
′. Then, we plug Q̂τ−1 into Equations (9) and (12)

26 See Equation (IA2) on page 8 of the Ghysels, Plazzi and Valkanov (2016) Online Appendix. See also the

MIDAS Matlab toolbox written by Eric Ghysels and collaborators for the code used in our estimation.

27 Following Ghysels, Plazzi and Valkanov (2016), the estimation of the MIDAS parameters involves

overlapping returns but the conditional R̂S and R̂K are constructed with non-overlapping returns.
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to define fitted conditional robust skewness and kurtosis by:

R̂Sτ−1 = RS(Q̂τ−1) and (18)

R̂Kτ−1 = RK(Q̂τ−1). (19)

In short, Equations (18) and (19) provide the conditional robust skewness and kurtosis

measures that we use throughout our empirical analysis.

Next, we establish that R̂Kτ−1 is a consistent estimator of its population counterpart,

RKτ−1, and then derive its asymptotic normality. The asymptotic properties of R̂Kτ−1

depend on those of Q̂τ−1, which in turn depend on the quantile MIDAS estimators θ̂α. Since

Ghysels (2014) and Ghysels, Plazzi and Valkanov (2016) do not provide detailed asymptotic

results for their quantile MIDAS estimator, we show the consistency and asymptotic nor-

mality of θ̂α in Propositions 10 and 11 of Section B.2 of the Online Appendix. Then, the

propositions below show that R̂Kτ−1 is a consistent and asymptotically normal estimator.

Proposition 1. (Consistency) Assume that a1 is bounded away from zero and that Assump-

tions 5,6 and 8 of Online Appendix B.2 are satisfied for α = {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875}′.

Then as N →∞, we have:

(i) Conditional on Ft−1, R̂Kτ−1 →p RKτ−1 for any given Xτ−1 and

(ii) P
(
R̂Kτ−1 −RKτ−1 →p 0

)
= 1, where P denotes probability.

Proof. See Online Appendix B.3.

Proposition 2. (Asymptotic Normality) Assume that a1 is bounded away from zero and

parts (a),(b) and (d) of Assumption 9 of Online Appendix B.2 are satisfied for

α = {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875}′. Then, conditional on Fτ−1,

√
N
(
R̂Kτ−1 −RKτ−1

)
d−→ N

(
0,R′Q,τ−1Ωτ−1RQ,τ−1

)
for any given Xτ−1 as N → ∞, where RQ,τ−1 = ∂RKτ−1

∂Qτ−1
is the 7 × 1 vector of partial
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derivatives and is defined analogously to RQ in Proposition 9 of Online Appendix B.1, Ωτ−1 =(
I7 ⊗X ′τ−1

)
GθΣG

′
θ (I7 ⊗Xτ−1), I7 is a 7 × 7 identity matrix, ⊗ denotes the Kronecker

product, and Gθ is a 7q × 7q block diagonal partitioned matrix with the ith diagonal block

given by the q × q matrix of partial derivatives,
∂β(θαi )

∂θ′αi
, for i = 1, 2, . . . , 7.

Proof. See Online Appendix B.3.

In the MIDAS quantile model, κ is unidentified if a1 is exactly zero, which explains the

restriction on a1. The remaining assumptions, intermediate results and proofs, together

with additional discussion, can be found in Sections B.2 and B.3 of the Online Appendix.

5 The Cross-Section of International Stock Returns

In this section, we evaluate the predictive ability of conditional robust skewness and con-

ditional robust kurtosis for the cross-section of international stock returns. Our empirical

analysis is based on portfolio sorts using either robust skewness or robust kurtosis to rank

international stock returns and formal Fama and MacBeth (1973) cross-sectional regressions.

5.1 Portfolio Sorts Based on Positive Excess Kurtosis

We begin with generating portfolios by sorting international stock index returns on their

individual RS or RK.28 At the end of each month, the stock returns are ranked accord-

ing to their RS or RK for that month and are then allocated into three portfolios: Low,

Medium and High. Consistent with standard practice (see, e.g., Fama and French, 1993),

the allocation breakpoints are the 30th and 70th percentile of the monthly RS/RK. Al-

locating countries to three portfolios ensures that there is a sufficient number of countries

in each portfolio even for the smaller EM cross-section. For each portfolio, we compute the

28 To simplify notation, we henceforth denote R̂Sτ−1 and R̂Kτ−1 simply as RS and RK.
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one-month ahead equally-weighted return and the Newey and West (1987) t-statistic.29 This

procedure is repeated every month. In short, the portfolio sorts allow us to assess whether

RS/RK have predictive information for portfolio returns over the next month.

In our empirical analysis, it is sensible to discern the case when returns display fatter tails

than the normal distribution and, as a result, kurtosis exceeds the value of 3 (i.e., RK >

3). Intuitively, kurtosis is a measure of the importance of outliers and, if outliers matter,

kurtosis must be higher than 3. Therefore, it is natural to expect that the fourth moment is

informative primarily for non-normal distributions indicated by positive excess kurtosis.

In this context, we perform the portfolio sorts based on RS and RK using only countries

for which on a given month RK > 3. We denote RS+
i,τ−1 = RSi,τ−1 and RK+

i,τ−1 = RKi,τ−1

for RKi,τ−1 > 3, otherwise we drop country i in month τ . This restricts our analysis to

the countries for which excess robust kurtosis is positive. We consider this restriction to be

economically motivated since investors are unlikely to care about kurtosis if it indicates that

the distribution tails are thinner than the normal. Additionally, this restriction accounts

for the cases when robust kurtosis has a low value due to estimation error. Imposing an

economic constraint on kurtosis is conceptually similar to the economic constraints imposed

on equity premium prediction by Campbell and Thompson (2008).30

The results on the portfolio sorts based on RS+ (Panel A) and RK+ (Panel B) are reported

in Table 4. Specifically, across all cases (DM, EM and ALL), mean returns are monotonically

increasing for RS+ and monotonically decreasing for RK+. This is an important finding:

higher RS+ consistently leads to higher returns, whereas higher RK+ consistently leads to

lower returns. RS+ has a stronger effect on EM: the High-minus-Low portfolio delivers

a statistically significant return of 0.76% per month (or 9.12% per year). RK+ is highly

significant for ALL countries: the High-minus-Low portfolio delivers a statistically significant

29 In computing the Newey and West (1987) t-statistic, we use the Bartlett kernel with the data-driven

bandwidth parameter selected by the AR(1) model (Andrews, 1991).

30 On average, 32 of the 39 countries display positive excess kurtosis, see Table A6 and Figure 5 of the

Online Appendix. For portfolio results without this restriction, see Table A5 of the Online Appendix.
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return of −0.44% per month (or −5.28% per year).

In conclusion, our evidence on portfolio sorts indicates the following: (1) robust skewness

has strong positive predictive power for future EM stock returns; (2) robust kurtosis has

strong negative predictive power for future stock returns; and (3) these findings become more

pronounced and more significant when robust kurtosis deviates from normality (RK > 3).

The latter two results comprise novel contributions to the literature.

5.2 Fama-MacBeth Regressions

In this section, we formalize our analysis of the predictive relation between stock returns

and the conditional RS and RK by estimating Fama and MacBeth (1973) cross-sectional

regressions. At each month τ , we estimate the following cross-sectional regression across

i = 1, ..., 39 countries:

Ri,τ =β0,τ + β1,τV OLi,τ−1 + β2,τRSi,τ−1 + β3,τRKi,τ−1 + εi,τ , (20)

where Ri,τ is the monthly return of the ith country stock index for month τ , and RSi,τ−1 and

RKi,τ−1 are the conditional robust skewness and kurtosis of the ith country for month τ −1,

respectively. V OLi,τ−1 controls for the realized volatility of each stock, which is computed

as the square root of the sum of the squared daily returns over the last month. Following

Fama and MacBeth (1973), we collect the estimated coefficients every month and report the

mean coefficients as well as Newey and West (1987) t-statistics. In some specifications, we

replace RS and RK by RS+ and RK+, which restrict the analysis to countries which on a

given month exhibit positive excess robust kurtosis.

In addition to the Fama-MacBeth regression in Equation (20), we also estimate an augmented

specification by adding two important economic fundamentals: the lagged dividend yield

(DYτ−1) and the lagged short interest rate (IRτ−1). The former is defined as the log of the

12-month rolling dividend ending at time τ − 1 divided by the price at τ − 2 (see., e.g.,

Welch and Goyal, 2008). The latter is defined as the lagged 1-month Eurodeposit rate for
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each country where available, otherwise we choose a similar 1-month interest rate based on

data availability. The data on DY and IR are obtained from the Refinitiv Eikon database.31

The results from the Fama-MacBeth regressions are presented in Table 5. The main findings

are as follows. First, for DM countries, only RK+ is statistically significant with a negative

coefficient (t-stat=−1.98) for the full specification. Therefore, for developed markets, the

higher the deviation from normality in terms of robust kurtosis the lower the future stock

returns. This result confirms the negative predictive ability of RK+ that we first established

with the portfolio sorts. The stronger results for RK+ relative to RK indicate that it is

positive excess robust kurtosis that matters most to investors. This makes intuitive sense,

since it is under positive excess kurtosis that outliers become relevant.

Second, for EM countries, only RS (or RS+) is statistically significant with a positive coeffi-

cient. For example, in regression (5) that conditions on V OL, RS+ and RK+, the coefficient

on RS+ is positive and significant (t-stat=2.40). This result confirms the positive predictive

ability of RS for EM that we first established with the portfolio sorts. However, the signifi-

cance of RS+ disappears when we also condition on the two economic fundamentals, ln(DY )

and IR. Therefore, although RS+ is significant in the absence of economic fundamentals, it

is not significant in the presence of economic fundamentals.

Third, for ALL countries, both RS+ and RK+ are individually significant with RS+ being

positive and RK+ being negative. However, when they are together in the same regression,

only RK+ retains its statistical significance (t-stat=−2.00). Indeed, RK+ remains signif-

icant when we also add the economic fundamentals (t-stat=−2.32). Therefore, across all

countries, the negative effect of RK+ is stronger than the positive effect of RS+. This is our

strongest result since for ALL countries RK+ is the only predictor that retains its statistical

significance across all specifications.32

31 We select DY and IR as the main economic fundamentals used in the Fama-MacBeth regression because

of data availability, their importance in equity premium prediction (see., e.g., Tsiakas, Li and Zhang,

2020), and to avoid high dimensionality in estimation, especially for the EM group of only 16 countries.

32 We consider our evidence of statistical significance (when present) as particularly strong because it

is based on a cross-section of 39 countries over a sample period of 24 years. This is a small sample
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Fourth, V OL is consistently insignificant in all Fama-MacBeth regressions. This is strong

evidence that the second moment does not provide any predictive ability for international

stock returns over and above the third and fourth moments. This finding further motivates

our focus on skewness and kurtosis.

Finally, fifth, the two economic fundamentals are statistically insignificant in all cases. Al-

though they do affect the significance of other variables (notably RS+) they do not individ-

ually exhibit statistical significance.

In summary, the Fama-MacBeth regressions indicate that robust kurtosis carries a negative

premium primarily for developed markets, whereas robust skewness carries a positive pre-

mium primarily for emerging markets. Hence each measure is dominant for a different group

of countries. Across all regressions, volatility is consistently insignificant. Similarly, the

dividend yield and the short interest rate are also insignificant. For the full cross-section of

countries, the predictive ability of robust kurtosis is stronger and more significant than that

of robust skewness. Robust kurtosis remains significant in the presence of volatility, skewness

and economic fundamentals. In short, for the full cross-section of countries, robust kurtosis

is dominant over robust skewness and is a powerful variable in predicting the cross-section

of international stock returns.33

6 Conclusion

In this paper, we introduce robust kurtosis, which is a new quantile-based measure for the

kurtosis of stock returns. The new robust kurtosis measure complements the existing measure

of robust skewness. We provide both an econometric and an empirical analysis of robust

kurtosis. Our econometric analysis derives robust kurtosis using a second-order Cornish-

compared to standard asset pricing studies focusing on individual US equities over long periods.

33 In Table A7 of the Online Appendix, we use log returns to form VOL, RS and RK, and find that the

results remain qualitatively the same. In Section K and Table A9 of the Online Appendix, we also

perform an out-of-sample analysis, which indicates that the effect of RK is a robust finding.
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Fisher expansion and assesses the finite-sample properties of robust kurtosis using Monte

Carlo simulations under different distributional specifications. In the Online Appendix, we

also establish the consistency and asymptotic normality of robust kurtosis. For the normal

distribution, we find that robust kurtosis is equivalent to the moment-based kurtosis. For

moderately fat-tailed distributions, robust kurtosis essentially provides the same information

as the moment-based measure. However, for severely fat-tailed distributions, when kurtosis

matters the most, robust kurtosis provides a distinct and more reliable alternative to the

moment-based kurtosis for measuring the thickness of the distribution tails (and center)

relative to the shoulder.

Our empirical analysis provides a comprehensive evaluation of the predictive information

of robust skewness and robust kurtosis for the cross-section of international stock index

returns. Our methodology is based on portfolio sorts and Fama-MacBeth cross-sectional

regressions. Our findings confirm the previously established result regarding robust skewness:

higher robust skewness in emerging markets is related to higher future stock returns. More

importantly, we establish a new empirical result regarding robust kurtosis: higher robust

kurtosis is related to lower future stock returns. This result holds for all countries but

is particularly strong for developed markets. Furthermore, robust kurtosis tends to have

higher predictive power when restricting the analysis to countries with positive excess robust

kurtosis. In other words, when the return distribution deviates meaningfully from normality,

robust kurtosis tends to be more informative.

In short, our empirical findings indicate that robust skewness carries a positive premium

primarily for emerging markets. In contrast, robust kurtosis carries a negative premium

primarily for developed markets. Taken together, for the full cross-section of countries, robust

kurtosis dominates the effect of robust skewness. These results are robust to controlling for

volatility and standard economic fundamentals. In conclusion, robust skewness together

with robust kurtosis provide powerful predictors for future international stock returns across

developed and emerging markets and highlight the role of higher moments in justifying

international diversification.

26



References

Amaya, D., P. Christoffersen, K. Jacobs, and A. Vasquez. 2015. Does realized skewness

predict the cross-section of equity returns? Journal of Financial Economics 118:135-167.

Andreou, E., E. Ghysels, and A. Kourtellos. 2010. Regression models with mixed sampling

frequencies. Journal of Econometrics 158:246-261.

Andrews, D. W. K. 1991. Heteroskedasticity and autocorrelation consistent covariance matrix

estimation. Econometrica 59:817-858.

Arditti, F. D. 1967. Risk and the required return on equity. Journal of Finance 22:19-36.

Arditti, F. D. 1971. Another look at mutual fund performance. Journal of Financial and

Quantitative Analysis 6:909-912.

Balanda, K. P. and H. L. Macgillivray. 1988. Kurtosis: A critical review. American Statisti-

cian 42:111-119.

Bali, T. G., N. Cakici, and R. F. Whitelaw. 2011. Maxing out: Stocks as lotteries and the

cross-section of expected returns. Journal of Financial Economics 99:427–446.

Bekaert, G., E. Engstrom, and A. Ermolov. 2015. Bad environments, good environments: A

non-Gaussian asymmetric volatility model. Journal of Econometrics 186:258-275.

Bekaert, G. and C. R. Harvey. 1997. Emerging equity market volatility. Journal of Financial

Economics 43:29-77.

Bowley, A. L. 1920. Elements of Statistics. New York: Scribner.

Boyer, B., T. Mitton, and K. Vorkink. 2010. Expected idiosyncratic skewness. Review of

Financial Studies 23:169–202.

Breitung, J. and N. R. Swanson. 2002. Temporal aggregation and spurious instantaneous

causality in multiple time series models. Journal of Time Series Analysis 23:651-665.

27



Brooks, C., S. P. Burke, S. Heravi and G. Persand. 2005. Autoregressive conditional kurtosis.

Journal of Financial Econometrics 3:399-421.

Campbell, J. Y. and S. B. Thompson (2008). Predicting excess stock returns out of sample:

Can anything beat the historical average? Review of Financial Studies 21:1509-1531.

Cornish, E. and R. Fisher. 1938. Moments and cumulants in the specification of distributions.

Review of International Statistical Institute 5:307-320.

Dittmar, R. F. 2002. Nonlinear pricing kernels, kurtosis preference, and evidence from the

cross section of equity returns. Journal of Finance 57:369-403.

Eberl, A. and B. Klar. 2020. Asymptotic distributions and performance of empirical skewness

measures. Computational Statistics & Data Analysis 146:106939.

Edgeworth, F. Y. 1905. The law of error. In Transactions of the Cambridge Philosophical

Society Vol.20. Cambridge: Cambridge University Press.

Edgeworth, F. Y. 1907. On the representation of statistical frequency by a series. Journal of

the Royal Statistical Society 70:102-106.

Engle, R. F. and S. Manganelli. 2004. CAViaR: Conditional autoregressive value at risk by

regression quantiles. Journal of Business and Economic Statistics 22:367-381.

Fama, E. and K. French. 1993. Common risk factors in the returns on stocks and bonds.

Journal of Financial Economics 33:3-56.

Fama, E. and J. MacBeth. 1973. Risk, return, and equilibrium: Empirical tests. Journal of

Political Economy 81:607–636.

Ghysels, E. 2014. Conditional skewness with quantile regression models: SoFiE presidential

address and a tribute to Hal White. Journal of Financial Econometrics 12:620-644.

Ghysels, E., A. Plazzi, and R. Valkanov. 2016. Why invest in emerging markets? The role

of conditional return asymmetry. Journal of Finance 71:2145-2192.

28



Ghysels, E., P. Santa-Clara, and R. Valkanov. 2005. There is a risk-return tradeoff after all.

Journal of Financial Economics 76:509-548.

Ghysels, E., P. Santa-Clara, and R. Valkanov. 2006. Predicting volatility: How to get the

most out of returns data sampled at different frequencies. Journal of Econometrics 131:59-95.

Guidolin, M. and A. Timmermann. 2008. International asset allocation under regime switch-

ing, skew and kurtosis preferences. Review of Financial Studies 21:889-935.

Hansen, B. E. 1994. Autoregressive conditional density estimation. International Economic

Review 35:705-730.

Harvey, C. R. and A. Siddique. 2000. Conditional skewness in asset pricing tests. Journal of

Finance 52:1263-1295.

Jondeau, E. and M. Rockinger. 2003. Conditional volatility, skewness, and kurtosis: Exis-

tence, persistence, and comovements. Journal of Economic Dynamics and Control 27:1699-

1737.

Jondeau, E. and M. Rockinger. 2012. On the importance of time variability in higher mo-

ments for asset allocation. Journal of Financial Econometrics 10:84-123.

Jondeau, E., Q. Zhang, and X. Zhu. 2019. Average skewness matters. Journal of Financial

Economics 134:29-47.

Kim, T. H. and H. White. 2004. On more robust estimation of skewness and kurtosis. Finance

Research Letters 1:56-73.

Kimball, M. S. 1993. Standard risk aversion. Econometrica 61:589-611.

Kraus, A. and R. H. Litzenberger. 1976. Skewness preference and the valuation of risk assets.

Journal of Finance 31:1085-1100.

Kumar, A. 2009. Who gambles in the stock market? Journal of Finance 64:1889-1933.

Langlois, H. 2020. Measuring skewness premia. Journal of Financial Economics 135:399-424.

29
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Table 1: Performance of Kurtosis Estimators based on RMSPE

This table reports the root mean squared proportional error (RMSPE) of the estimators for robust kurtosis (RK) and moment-
based kurtosis (K) using Monte Carlo simulation. For each distribution, we draw 10, 000 artificial samples of the one-period
return rt with sample size Nh, where N = {300, 1000, 6000} and h = {1, 5, 22, 66, 250} is the horizon of non-overlapping returns.
The RMSPE is defined as the average across simulations of the square root of the squared ratio of the difference between the
estimator and its population value divided by its population value, where the population value is taken from Table 3.

h =1 h =5 h =22 h =66 h =250 h =1 h =5 h =22 h =66 h =250

Panel A: N(0, 1) Panel B: N(0, 1) with outliers

N = 300 R̂K 0.56 0.56 0.57 0.58 0.57 0.60 0.58 0.59 0.58 0.57

K̂ 0.09 0.09 0.09 0.09 0.09 7.20 1.32 0.21 0.19 0.10

N = 1000 R̂K 0.30 0.29 0.29 0.29 0.29 0.30 0.29 0.29 0.29 0.29

K̂ 0.05 0.05 0.05 0.05 0.05 11.79 1.39 0.12 0.06 0.05

N = 6000 R̂K 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

K̂ 0.02 0.02 0.02 0.02 0.02 9.06 0.52 0.04 0.02 0.02

Panel C: t(5) Panel D: skt(5,−0.3)

N = 300 R̂K 0.39 0.49 0.54 0.56 0.55 0.47 0.50 0.54 0.54 0.50

K̂ 0.73 0.49 0.20 0.15 0.09 0.74 0.51 0.24 0.16 0.10

N = 1000 R̂K 0.18 0.24 0.28 0.28 0.29 0.24 0.25 0.28 0.27 0.26

K̂ 1.02 0.69 0.22 0.08 0.05 0.90 0.68 0.35 0.13 0.07

N = 6000 R̂K 0.07 0.09 0.10 0.11 0.11 0.10 0.10 0.11 0.11 0.12

K̂ 1.24 3.73 0.19 0.05 0.02 1.31 0.87 0.54 0.11 0.03

Panel E: GARCH(0.9, 0.08) Panel F: GARCH(0.9, 0.08)

with N(0, 1) innovation with t(10) innovation

N = 300 R̂K 0.47 0.42 0.44 0.46 0.51 0.38 0.40 0.41 0.43 0.49

K̂ 0.27 0.33 0.41 0.40 0.27 0.44 0.44 0.55 0.57 0.46

N = 1000 R̂K 0.24 0.21 0.21 0.22 0.25 0.19 0.19 0.19 0.21 0.24

K̂ 0.24 0.31 0.45 0.33 0.20 0.39 0.50 0.63 0.51 0.67

N = 6000 R̂K 0.09 0.08 0.08 0.09 0.10 0.07 0.07 0.07 0.08 0.09

K̂ 0.28 0.29 0.20 0.15 0.10 0.49 0.69 1.12 0.91 0.37

Panel G: GARCH(0.9, 0.08) Panel H: GARCH(0.9, 0.08)

with t(7) innovation with t(5) innovation

N = 300 R̂K 0.36 0.38 0.40 0.42 0.48 0.32 0.36 0.38 0.41 0.46

K̂ 0.55 0.53 0.61 0.71 0.71 N/A N/A N/A N/A N/A

N = 1000 R̂K 0.17 0.18 0.19 0.20 0.23 0.16 0.17 0.18 0.19 0.23

K̂ 0.49 0.66 0.90 1.05 1.35 N/A N/A N/A N/A N/A

N = 6000 R̂K 0.07 0.07 0.07 0.08 0.09 0.06 0.06 0.07 0.07 0.09

K̂ 0.73 1.31 1.34 1.21 1.08 N/A N/A N/A N/A N/A
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Table 2: Performance of Kurtosis Estimators based on RMSE

This table reports the root mean squared error (RMSE) of the estimators for robust kurtosis (RK) and moment-based kurtosis
(K) using Monte Carlo simulation. For each distribution, we draw 10, 000 artificial samples of the one-period return rt with
sample size Nh, where N = {300, 1000, 6000} and h = {1, 5, 22, 66, 250} is the horizon of non-overlapping returns. The RMSE
is defined as the average across simulations of the square root of the squared difference between the estimator and its population
value, where the latter is taken from Table 3.

h =1 h =5 h =22 h =66 h =250 h =1 h =5 h =22 h =66 h =250

Panel A: N(0, 1) Panel B: N(0, 1) with outliers

N = 300 R̂K 1.69 1.69 1.71 1.73 1.71 1.79 1.75 1.76 1.75 1.71

K̂ 0.28 0.28 0.28 0.28 0.28 21.60 3.95 0.64 0.56 0.29

N = 1000 R̂K 0.89 0.87 0.87 0.88 0.87 0.90 0.88 0.88 0.88 0.87

K̂ 0.15 0.15 0.15 0.16 0.16 35.36 4.17 0.37 0.17 0.16

N = 6000 R̂K 0.34 0.34 0.33 0.34 0.34 0.34 0.34 0.34 0.34 0.34

K̂ 0.06 0.06 0.06 0.06 0.06 27.17 1.57 0.12 0.07 0.06

Panel C: t(5) Panel D: skt(5,−0.3)

N = 300 R̂K 1.64 1.68 1.69 1.71 1.68 2.35 1.82 1.73 1.71 1.64

K̂ 6.58 2.01 0.66 0.47 0.29 8.30 2.36 0.80 0.51 0.31

N = 1000 R̂K 0.76 0.83 0.87 0.87 0.87 1.21 0.92 0.89 0.87 0.86

K̂ 9.17 2.87 0.72 0.25 0.16 10.13 3.19 1.17 0.39 0.20

N = 6000 R̂K 0.28 0.32 0.33 0.34 0.33 0.49 0.37 0.35 0.34 0.40

K̂ 11.18 15.42 0.63 0.16 0.07 14.75 4.05 1.82 0.35 0.09

Panel E: GARCH(0.9, 0.08) Panel F: GARCH(0.9, 0.08)

with N(0, 1) innovation with t(10) innovation

N = 300 R̂K 1.68 1.64 1.68 1.69 1.70 1.64 1.67 1.64 1.63 1.69

K̂ 1.18 1.63 1.97 1.79 1.00 3.08 3.08 3.65 3.41 1.99

N = 1000 R̂K 0.86 0.80 0.79 0.81 0.85 0.82 0.78 0.78 0.79 0.82

K̂ 1.03 1.51 2.18 1.47 0.73 2.72 3.54 4.13 3.06 2.88

N = 6000 R̂K 0.33 0.30 0.31 0.31 0.32 0.32 0.29 0.29 0.31 0.32

K̂ 1.21 1.43 0.98 0.68 0.36 3.44 4.85 7.37 5.47 1.60

Panel G: GARCH(0.9, 0.08) Panel H: GARCH(0.9, 0.08)

with t(7) innovation with t(5) innovation

N = 300 R̂K 1.63 1.64 1.64 1.65 1.69 1.58 1.62 1.61 1.63 1.66

K̂ 5.57 4.98 5.76 5.51 3.75 N/A N/A N/A N/A N/A

N = 1000 R̂K 0.79 0.77 0.78 0.79 0.82 0.78 0.76 0.75 0.78 0.82

K̂ 5.04 6.19 8.42 8.16 7.18 N/A N/A N/A N/A N/A

N = 6000 R̂K 0.31 0.29 0.29 0.30 0.31 0.30 0.29 0.29 0.29 0.31

K̂ 7.41 12.28 12.57 9.36 5.73 N/A N/A N/A N/A N/A
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Table 3: The Population Value of Kurtosis Measures

This table reports the population value for the robust kurtosis (RK) and the moment-based kurto-
sis (K). The population values are computed for non-overlapping returns across five return horizons
h = {1, 5, 22, 66, 250} and seven return distributions. The table reports analytical results for the normal
distribution across all horizons and for the Student-t(5) distribution when h = 1. For all other cases, the
population values are simulated: we draw 10, 000 artificial samples for the one-period return rt with length
T = 20, 000h, and use these to compute the non-overlapping h-period return for each sample. The population
value is closely approximated by taking the average across the simulations.

h = 1 h = 5 h = 22 h = 66 h = 250

Panel A: N(0, 1)

RK 3 3 3 3 3

K 3 3 3 3 3

Panel B: t(5)

RK 4.20 3.45 3.16 3.07 3.02

K 9 4.14 3.27 3.09 3.02

Panel C: skt(5,−0.3)

RK 5.05 3.64 3.23 3.16 3.27

K 11.26 4.65 3.37 3.11 2.98

Panel D: GARCH(0.9, 0.08) with N(0, 1) innovation

RK 3.61 3.89 3.82 3.65 3.36

K 4.35 4.91 4.82 4.43 3.68

Panel E: GARCH(0.9, 0.08) with t(10) innovation

RK 4.27 4.15 4.01 3.80 3.47

K 7.07 7.01 6.58 6.02 4.31

Panel F: GARCH(0.9, 0.08) with t(7) innovation

RK 4.56 4.28 4.11 3.88 3.54

K 10.20 9.38 9.38 7.76 5.30

Panel G: GARCH(0.9, 0.08) with t(5) innovation

RK 4.94 4.49 4.26 4.01 3.65

K N/A N/A N/A N/A N/A
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Table 4: Portfolio Sorts Based on RS+ or RK+

This table displays the performance of portfolios sorted on either conditional robust skewness (RS+) or
conditional robust kurtosis (RK+). In this table, the portfolio sorts use only countries for which RK
deviates from normality: RS+

i,τ−1 = RSi,τ−1 and RK+
i,τ−1 = RKi,τ−1 for RKi,τ−1 > 3, otherwise we drop

country i in month τ . The portfolios are rebalanced at the end of every month using the 30th percentile
for the Low portfolio and the 70th percentile for the High portfolio. The table reports the mean of the
one-month ahead return of equally-weighted portfolios. Returns are reported in monthly percent. We also
report Newey-West t-statistics (in parenthesis) and the average RS+ or RK+ for each portfolio. The sample
period ranges from January 1997 to June 2019. For notational simplicity, we suppress the circumflex on
RS+ and RK+ and their dependence on τ − 1.

Panel A: Portfolio Sort on RS+

Low Medium High High−Low

DM

Mean Return 0.66 0.82 0.88 0.21

(t-stat) (1.86) (2.37) (2.36) (1.33)

Average RS+ -1.37 -0.58 0.28

EM

Mean Return 0.54 1.10 1.30 0.76

(t-stat) (1.08) (2.42) (2.37) (2.05)

Average RS+ -1.19 -0.17 0.96

ALL

Mean Return 0.70 0.88 1.01 0.30

(t-stat) (1.88) (2.42) (2.33) (1.45)

Average RS+ -1.37 -0.43 0.65

Panel B: Portfolio Sort on RK+

Low Medium High High−Low

DM

Mean Return 0.90 0.77 0.65 -0.25

(t-stat) (2.37) (2.24) (1.84) (-1.52)

Average RK+ 3.67 4.83 7.18

EM

Mean Return 1.28 0.95 0.69 -0.59

(t-stat) (2.64) (2.23) (1.21) (-1.91)

Average RK+ 3.61 4.70 8.34

ALL

Mean Return 1.10 0.83 0.66 -0.44

(t-stat) (2.79) (2.30) (1.61) (-2.82)

Average RK+ 3.61 4.72 7.74
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Table 5: Fama-MacBeth Regressions

This table reports the results from Fama and MacBeth (1973) cross-sectional regressions for 23 developed
markets (DM) and 16 emerging markets (EM). Each month, we regress monthly returns on the lagged
conditioning variables. The table reports the time-series mean of each coefficient scaled by 103 except for
the short interest rate IR, which is unscaled. Newey-West t-statistics are reported in parenthesis. ***,**
and * denote statistical significance at the 1%, 5% and 10% level, respectively. The sample period ranges
from January 1997 to June 2019. For notational simplicity, we suppress all circumflexes and the dependence
of the lagged regressors on τ − 1.

Panel A: DM Countries

(1) (2) (3) (4) (5) (6)

Constant 5.40* 5.71 5.48 8.64 ** 9.12** 11.10

(1.67) (1.61) (1.59) (2.11) (2.14) (1.06)

V OL 36.88 40.46 41.67 39.41 39.25 22.45

(0.66) (0.72) (0.67) (0.62) (0.61) (0.34)

RS 1.07

(1.35)

RK -0.28

(-0.81)

RS+ 1.47 0.72 -0.45

(1.63) (0.58) (-0.35)

RK+ -0.84** -0.77 -1.27**

(-1.96) (-1.35) (-1.98)

ln(DY ) -0.25

(-0.10)

IR -0.27

(-0.26)

Panel B: EM Countries

Constant 7.87* 7.24* 8.90 10.87* 12.43* 13.52

(1.70) (1.67) (1.55) (1.69) (1.89) (0.92)

V OL -4.16 54.78 -9.83 56.84 7.33 68.11

(-0.08) (0.95) (-0.13) (0.74) (0.09) (-0.85)

RS 3.44**

(2.26)

RK -0.69

(-1.02)

RS+ 3.27** 4.44** 1.67

(1.99) (2.40) (0.70)

RK+ -1.49 -1.11 -1.09

(-1.50) (-1.04) (-0.73)

ln(DY ) -0.94

(-0.26)

IR 0.20

(0.36)

Panel C: ALL Countries

Constant 5.69* 5.51* 6.27* 8.03** 9.33** 7.23

(1.71) (1.68) (1.82) (2.09) (2.46) (1.07)

V OL 37.70 52.82 33.95 46.90 41.12 36.02

(0.80) (1.11) (0.65) (0.89) (0.78) (0.76)

RS 1.72*

(1.92)

RK -0.34

(-1.25)

RS+ 1.57* 1.04 0.58

(1.81) (1.02) (0.49)

RK+ -0.79** -0.83** -1.13**

(-2.06) (-2.00) (-2.32)

ln(DY ) -0.86

(-0.54)

IR -0.04

(-0.09)
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